HubSppt

25 Tips and
Tricks for Using
HTML and CSS

Like a Pro

</>
-

25 Tips and Tricks for Using HTML and CSS Like a Pro

Infroduction

HTML and CSS are powerful tools for creating web
pages. HTML declares the markup — adding buttons,

images, headings, and paragraphs — while CSS styles

the elements for visual appeal. ‘

HTML features many elements and accompanying

attributes that you might never have encountered. CSS is
no different, containing numerous uncommon properties
and style declarations. Plus, with multiple methods for
accomplishing specific tasks, both languages present

opportunities to gain a more in-depth understanding of

best practices and underused techniques.

So, while you don’t need to know everything HTML and
CSS can do, you can always benefit from some new tips

and fricks to hone your web development skills.

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Table of Contents

Expert Insights: Becoming an HTML/CSS Power User 4

HTML: Code 1o CONVENTION ... 5
CSS: CONSISTENCY 1S K@Y ... oo 7
Accommodate Diverse Displays.9
Be Browser-Friendly ... 11
Minimize Bugs, Optimize Performance. ... 16
Uncommon but Useful HTML Tags 17
Interactive Elements. ... 18
Displaying CONTENT ... 21
Lesser-Known CSS Properties to Elevate Your Skills 23
SIYIE 10 O T 24
Fine-Grained Control ... 28
Conclusion 34

Subscribe 0 HubSpor’s Website Blog

Get daily tips for coding and website development right in your inbox.

https://blog.hubspot.com/subscriptions?utm_source=offers&utm_medium=offers&utm_campaign=seondary-conversion_html-hacks_ebook

25 Tips and Tricks for Using HTML and CSS Like a Pro

Expert Insights:
Becoming

an HTML/CSS
Power User

This section offers a mixture of
hands-on demonstrations and high-level
advice about best practices. Where possible,
it uses code snippets to demonstrate
concepts and features, such as HTML tags
and CSS properties.

HubSpbt 4

25 Tips and Tricks for Using HTML and CSS Like a Pro

HTML: Code to Convention

Here are a few HTML best practices you can use to become
an even better developer.

01. Write HTML Before CSS [)

When creating pages or their components, you may be tempted to begin styling

before finishing the markup. But, while it can be satisfying to add some aesthetic
appeal, you'll likely take longer to finish. Adding style while simultaneously finishing
markup means many more modifications, deletions, and additions in your stylesheet.

Instead, first ensure that you complete your HTML, using properly sequenced
semantic elements to understand how each element fits on the pageThen, you
won’t have to restyle your CSS based on HTML-induced layout changes.

02. Rely on the Proper Semantic HTML Elements [)

HTML has numerous element tags, each for a particular purpose. These include <a>
tags for anchor links, header and footer tags that determine where your content
displays, for unordered (bulleted) list items, and more.

Theoretically, you could use CSS to make a standard paragraph look like a section
header or style a <div> element like an unordered list. However, it’s far better to
implement appropriate HTML elements where they can work as intended.

HubSEbt 5

25 Tips and Tricks for Using HTML and CSS Like a Pro

There are countless benefits to using proper semantic elements, including:

+ Keeping your code simple and readable

« Improving accessibility

+ Enabling search engines to better understand your page, which allows for
accurate indexing and improved SEO

This practice also ensures that you use CSS to its greatest capacity, enabling you to
reference specific semantic elements rather than generic <div> classes.

03. Always Validate HTML Code

Web apps must follow certain standards to ensure security, accessibility, and a

positive user experience. Ensuring that your web application follows these standards
means that it will remain usable, efficient, and optimally secure.

To verify that your web application follows these standards, you can manually
compare your site with the W3C documentation. Alternatively, you can use validator
tools like the W3C Markup Validator. This tool allows you to provide a URL, upload

an HTML file, or paste HTML code directly. Then, it provides validation information,
warnings, and errors.

This tool is an ongoing experiment in better HTML checking, and its behavior remains subject to change
Showing results for https:/developer.mozilla.org/

Checker Input

Show [Jsource [Joutine [limage report | Options... |

> Check by (address
Here’s Th e https://developer.mozilla.org/

Check

results page
for MDN:

Use the Message Filtering button below to display options for hiding/showing particular messages, and to see total counts of errors and warnings
Message Filtering

1. Info Trailing slash on void elements has no effect and interacts badly with unquoted attribute values.
From line 1, column 73; to line 1, column 95

s#"><head><meta charset="utf-8"/><meta

2. Info Trailing slash on void elements has no effect and interacts badly with unquoted attribute values.
From line 1, column 96; to line 1, column 163

="utf-8"/><meta name="viewport" content="width=device-width,initial-scale=1"/><link

3. Info Trailing slash on void elements has no effect and interacts badly with unquoted attribute values.
From line 1, column 164; to line 1, column 216
scale=1"/><link rel="icon" href="/favicon-48x48.cbbd161b.png"/><link

HubSpt

https://www.w3.org/Consortium/mission.html#principles
https://validator.w3.org/
https://developer.mozilla.org/

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

CSS: Consistency is Key

HubSPdt

04. Use CSS Resets ()

Many elements have default CSS styles.

Some of these styles come from a o

browser’s default style settings. As a result, e e P Gk sl

even a simple paragraph styled with the

CSS below may appear differently across

multiple browsers.

To maintain consistency, you should reset all default browser styles using CSS resets.
Fortunately, most popular CSS frameworks employ this approach automatically, but
you can also reset all styles manually without a framework.

However, instead of scripting a full reset stylesheet, you can use Eric Meyer’s Reset,
a ubiquitous stylesheet designed for this purpose. The stylesheet code is publicly
available and ready to paste into your project.

05. Use a CSS Preprocessor to Improve o
Development Experience

Developers typically want to do more work with less code, and often prefer tools
that extend a language’s native features. For CSS, you can use a preprocessor that
provides features outside its native capabilities. Two popular CSS preprocessors are
Sass and Less.

These preprocessors are scripting languages that compile into browser-friendly CSS.

You set them up in a development environment, using Sass files for development
and the generated CSS files for production.

https://meyerweb.com/eric/tools/css/reset/index.html
http://web.simmons.edu/~grovesd/comm244/notes/week4/reset.css
https://developer.mozilla.org/en-US/docs/Glossary/CSS_preprocessor
https://sass-lang.com/
https://lesscss.org/

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Among many other features, preprocessors like Sass support nesting style
declarations:

div {

color: yellow;

p {
font-weight: bold;

The p above matches paragraph tags that are descendants of the div tag.

06. Use a Naming Convention Such as the BEM Convention

When building applications, several collaborators may contribute to a codebase.
Every developer has unique preferences, which might result in inconsistencies within
the code. Fortunately, maintaining defined structures solves this problem.

One of the most common methodologies is the Block, Element, Modifier (BEM)

convention. This convention creates a structure that guides you and your collaborators
in writing understandable, maintainable CSS.

It recommends adding classes to HTML elements as follows:
* Use block to specify an independent component.
+ Use an element only within the block.

Use a modifier to specify the appearance or behavior of a block or an element.

https://getbem.com/

~— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Accommodate Diverse Displays

07. Follow a Mobile-First Approach for Writing CSS

Building responsive applications can be a headache, so it’s best to start building to

accommodate the mobile view. This is because it’s easier to add elements to fit a

desktop view than to remove elements so a desktop site works on a mobile device.

When writing CSS, first write for narrow, small-screened mobile devices, then make

additions for larger screens.

T

08. Use Media Queries for Device Responsiveness

—~——y

different
to achieve device

There are
ways
responsiveness when building
applications. One way is
efficiently using the flex or
grid properties or values.
However, these values do not
apply to every situation. This
is where using media queries

can be a great solution.

By using media queries, you
can target specific screen

size ranges and modify your

styles fo fit the desired range.

Suppose you have style
modifications for a mobile
tablet,

computer, and an ultra-wide

device, desktop

desktop monitor.

div {
max-width: 200px;
width: 100%;

@media screen and (min-width:

div {

max-width: 400px;

@media screen and (min-width:

div {

max-width: 600px;

400px) {

800px) {

25 Tips and Tricks for Using HTML and CSS Like a Pro

In the style declaration above, the div has a max-width of 200px. By using
media queries, you can modify this property to have a value of 400px on a screen
less than 400px wide. For a screen less than 800px in width, you can modify the
property to have a value of 600px.

09. Use Lazy Loading to Improve Application Performance

Lazy loading involves delaying the retrieval of certain resources until needed.
This concept improves page load time and system performance.

A typical web page has a header, landing background, several sections,
media, and a footer. When you try to load such a page, the browser requests all
resources from the server. The time it takes to complete the request depends on the
page’s resources.

By implementing lazy loading (especially for images), a browser only requests
the necessary resources, avoiding the wait for other resources until the user

reaches them.

To enable lazy loading of images, you can use the lazy value for the
loading attribute:

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

B¢ Browser-Friendly

10. Avoid Using the 'important Flag

CSS can prove immensely frustrating when you combine stylesheets. For example,
let’s say you use a templated stylesheet and your own stylesheet. You may find an
element doesn’t display as intended because the template style is overwriting your
style. The fastest and most straightforward solution is to use the 'important flag.

However, this quick fix can create additional problems. It might conflict with another
stylesheet that uses the same flag or reduce your stylesheet’s readability. More

broadly, it invites poor coding practices that prioritize a less robust solution over
high-quality code.

For example, consider the following index . html file:

<link rel="stylesheet” href="./global.css” />

<link rel="stylesheet” href="./index.css” />

<div class="box1l"”>

<p>Paragraph 1</p>

</div>

<div class="box2">
<p>Paragraph 2</p>

</div>

The HTML above references global.css and div p
index.css. Let’s say global. css has this code:
Here, the child p elements of div have the color

value blue.

color: blue;

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Additionally, you want the p elements of index.html to appear in red. You code
this as follows:

p {
color: red;

This style declaration won’t work; the p element would remain blue because the
style in the global. css file has greater specificity than the one we declared in
index. css. Theoretically, we could simply achieve our desired outcome by using
the !'important flag:

p {
color: red !important;

This would indeed change the color of the p element to red. However, what if we
want to make the p element in the div block labeled box2 appear in green? We
could add another bit of code:

.box2 p {

color: green;

}

However, importance takes precedence over specificity in applying styles, so the
p element in all div blocks would remain red. To recolor the p element in the div
block box2 to green, we would need to add another !'important flag:

.box2 p {

color: green !important;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity#how_is_specificity_calculated

25 Tips and Tricks for Using HTML and CSS Like a Pro

However, adding more !important flags quickly disrupts the CSS cascading

order in our document — actually reversing it for elements with the flag applied.
Browsers use this ordering to decide which styles to display, and it can quickly
become difficult fo debug a cascade with ! important flags.

For example, if we wanted to change the color of our p elements to match a user’s
theme selection, we would need to apply ! important flags tfo the declaration for
each element in which we’ve already added an !important flag.

Instead, it’s better practice to change the specificity of these elements.

One way to remove the need for an !important flag in our index. css file is by
increasing the declaration’s specificity to be equal to the one in global.css, in
which case the last declared rule takes precedence. For example, we can add the
div type to the declaration in index. css:

div p {
color: red;

}

When importing styles from external stylesheets, we treat their ordering as if the

declarations they contain were all concatenated and declared in the referencing
document. In our case, index. css is declared last, so the p element will have a

color value of red.

Then, to make sure the color of the p element in the div block labeled box2 is green,
we would increase the specificity of its declaration as well by targeting it with a
class selector, which takes precedence over the div type:

.box2 p {

color: green;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade#cascading_order
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade#cascading_order
https://www.w3.org/TR/css-cascade-3/#cascade-order

25 Tips and Tricks for Using HTML and CSS Like a Pro

Because this declaration has higher specificity than the other two, it doesn’t matter
if it’s declared before or after them — it will take precedence.

In general, the 'important flag should only be used to ensure individual rules
cannot be overridden later, and avoided at all other times. To override stylesheets
you can’t remove, it’s best to use cascade layers. So, the optimal way to display all

of our chosen colors is to reorder our list of styles or change the specificity of the
elements they reference. This approach makes it easier to debug our CSS when our
content doesn’t display as expected.

11. Use Fallback Fonts

You must create some web applications following a style guide. This guide prescribes
the colors you should use, element sizes, media, and typography. Regarding

typography, the style guide will include the font face, type, size, character spacing,

and even line spacing.

These font types could be:
+ Hosted on the same server as the web application
* Hosted on an external server (like Google fonts)
« Installed on the user’s device

So when do you use fallback fonts?

In certain scenarios, a poor internet connection or broken/nonexistent font link can

prevent your CSS-defined fonts from loading.

That’'s why it’s best practice to “prepare” by providing fallbacks. Here’s what a
fallback font declaration looks like:

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity#precedence_over_third-party_css

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

@import url(‘https://fonts.googleapis.com/

css?family=Random’) ;

body {

font-family: Random, Consolas, Helvetica, Arial

For the font-£family property, there are four font names. The first font, Random,
is the most-preferred and imported from the CSS file. If that font does not load, the
second font, Consolas, replaces it, and so on.

With fallbacks, you can maintain consistent typography when a font does not load.
For example, if Consolas is similar to Random, using Consolas will not significantly
affect your site’s appearance. To take advantage of fallbacks for typography, you
can provide alternative fonts in order of their similarity to the original.

HubSPdt 15

~— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Minimize Bugs, Optimize
Performance

12. Use Linting Tools to Ensure Cleaner and

Syntactically Correct CSS

Linting tools perform source code analysis to determine potential errors, especially
regarding syntax errors. Additionally, after analysis, some linting tools can suggest
code that matches a specific, predefined, or manually defined standard or
best practice.

For example, Stylelint is an efficient CSS linter that has built-in rules for modern
CSS. It allows you to create custom rules fo accommodate your coding style. It
also fixes discovered issues automatically where possible, which is exceptionally
convenient for larger codebases.

13. Use CSS Compression Tools to Optimize Website

Performance

Whenever you visit a website, your browser requests resources from the host server.
Larger files take longer to fetch and use more network bandwidth.

Therefore, you should consider using minifying or compression methods whenever
possible, especially when working on large CSS codebases.

For small or simple projects, compression may make little difference. For such cases,
you can use a minifying tool like CSS Minifier.

When you minify your CSS file, ensure you remove unnecessary content like
whitespace and nonessential comments. While its results vary by case, this practice
may significantly reduce file size and enhance site performance.

HubSpt

16

https://stylelint.io/
https://www.toptal.com/developers/cssminifier

25 Tips and Tricks for Using HTML and CSS Like a Pro

OC 1000
0
O O
OO

Uncommon
bur Useftul
HTML Tags

This section includes code snippets
showcasing how, why, and when to use some
less-common HTML tags. You might not be
familiar with some of these tags, but you’ll
likely find them simple — and beneficial —
to implement.

N
//—<—>/(/=<II-)
(=—>>KL/=ID
(=I1>=\\ —.

HubSpbt 17

25 Tips and Tricks for Using HTML and CSS Like a Pro

Interactive Elements

14. Autocomplete <datalist> tag

The datalist HTML tag allows you to provide a list of optional elements that
users can choose from when providing inputs.

Here’s an example: Result:

<input list="colors-list” /> v

<datalist id="colors-list”>
<option value="Blue” />
<option value="Purple” />
<option value="Yellow” />
<option value="Green” />
<option value="Indigo” />

</datalist>

You connect the input and datalist by passing the datalist ID to the input’s
list atfribute.

The input also uses the datalist for auto-completion. For example, if the user
types “B,” the data list shows Blue:

Bl v

HubSPt

18

25 Tips and Tricks for Using HTML and CSS Like a Pro

15. <optgroup>

understand what option to choose.

Here’s an example:

<select>
<optgroup label="Vegetable”>
<option>Lettuce</option>
<option>Carrots</option>

</optgroup>

<optgroup label="Fruit”>
<option>Apple</option>
<option>Banana</option>
</optgroup>

</select>

HubSpt

You can group the options in a select element using the optgroup tag. This tag is
useful when you have a list of options with different categories and helps the user

Depending on the default styles your
browser provides for the select
element, you should have a result

similar fo this:

v Lettuce ‘
Carrots

Apple
Banana

25 Tips and Tricks for Using HTML and CSS Like a Pro

16. <details> tag

Suppose you build a stacked list of . .
elements known as an accordion. < Headlng 1
Each item can be expanded or
collapsed. v Headlng 2
, , Paragraph for Heading 2.
You can implement this .
o _ _ Paragraph for Heading 2.
functionality with JavaScript, Paragraph for Heading 2
but you can also do it with the Paragraph for Heading 3
details tag in HTML. Using Paragraph for Heading a
this tag automatically makes the
functionality accessible to every .
user. JavaScript requires more » Headlng 3
work to ensure it is accessible.
Here’s an example: The result:
<details>
<summary>Title of item</ ’Tltle Of ltem
summary>

Here are the remaining
details V¥ Title of item

</details> Here are the remaining details

By using some CSS, you can achieve the complete look you want. Also, the
details element has an open attribute that can be true or false. With some
JavaScript, you can programmatically expand or collapse the element and achieve

the functionality you want.

HubSppt 20

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Displaying Content

17. <meter> tag o0

The meter tag is very useful for displaying values that fall into a particular range.
It reduces the need for HTML, CSS, and even JavaScript.

Assume you want to display someone’s score where:
The minimum is O.
The maximum is 70.
The failing score is anything less than 30.

The passing score is anything more than 55.

You can do this with the meter tag You specify the minimum with themin
with a value of 20 as follows: atfribute, the maximum with max,
failure with low, passing with high,

<meter the best with optimum, and the value

max="70"
low="30" The resulft:

optimum="70"

value="20" With a value of 20, the meter is red.

Here’s the same meter with values of

high="50"

20 40 and 60, respectively:
</meter>

HubSPdt

21

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

18. <template> tag

As the name implies, the template tag allows you to create a template. This works
because the browser doesn’t render the template, but some JavaScript code can
make the template appear during runtime after the page loads.

In essence, it is HTML code that you store somewhere to use later:

<hl>Template</h1l> Result:

<p>I am not a template</p> Template

<template id="para-
template”>

<p>I am a template</p>

I am not a template

</template>

The browser doesn’t render the
text under the para-template

) Result:
template during page load. However,

you can use JavaScript to display the

Template

const template = document.

getElementById(“para-

template”) I am not a template
document.

querySelector (“body”) .

appendChild(template. I am a tf:IIlI)lfitf:

content)

First, you get the template with the id of para-template. Then you append the
content of the template to the body element. The result is that instead of creating
elements in JavaScript, you can simply create a template in HTML and display it
as needed.

25 Tips and Tricks for Using HTML and CSS Like a Pro

GL ~
Lesser-Known
CSS Properties

o Elevate Your
SKills

You can sharpen your code by using some
of these CSS properties.

A

HubSppt 23

25 Tips and Tricks for Using HTML and CSS Like a Pro

Styletoa T

19. all property

The all property allows you to reset all style properties of an element (except
unicode-bidi, direction, and CSS Custom Properties). You can reset them fo

their initial or inherited values.

For example:

HTML CSS
<div> p {
<p>Hello</p> color: green;
</div> border: 2px solid blue;

font-weight: bold;

The result:

ello

The ptaghas color,border, and font-weight style declarations according to the
code above. By adding the all property with an initial value, these properties

return to their defaults:

The result:

p {
color: green;

border: 2px solid blue;
font-weight: bold; ‘ ', 0

all: initial;

25 Tips and Tricks for Using HTML and CSS Like a Pro

If you use the all property with an inherit value, it inherits properties from the
element’s parents or ancestors:

div { The result:

color: blue;

border: 2px solid blue; Hello

p { As you can see here, the p element
color: green; inherits the color and border
font-weight: bold; properties from the div, and the p
all: inherit; loses its own styles.

20. currentColor

The currentColor keyword specifies the color property within its
designated scope.

Sometimes, when writing CSS, you may style a child element with the color specified
for the parent element. This could look like this:

HTML CSS
<div> div {
<p>I am a paragraph</p> color: green;
</div> }
p {
border: 1lpx solid green;

~— 25 Tips and Tricks for Using HTML and CSS Like a Pro

This achieves the desired result, but if you want to change the color of the div, you
also have to change it in the p style’s declaration. A simple way to go about this is

using currentColor:

div { The result:

color: green;

I am a paragraph

p {

Semckers T cEli) The current value of currentColor is

currentColor: green, as that’s what the parent (div)
} or the target element (p) has.

21. CSS Counters

CSS counters are variables that change dynamically depending on the number
of fimes you use them. With such variables, you can add numbering to elements
without using the ol tag.

Suppose you have the following elements:

<section>
<h2>First heading</h2>
<h2>Second heading</h2>
<h2>Third heading</h2>

</section>

25 Tips and Tricks for Using HTML and CSS Like a Pro

If you wanted to number these headings (1, 2, 3), you would typically have to
do that manually, as using o1 and h2 would be semantically incorrect. But with CSS
counters, you can automatically enable the numbering:

section { The result:

counter-reset: heading;

1 - First heading

section h2 {
counter-increment:

heading; 2 - Second heading
}

3 - Third heading

section h2::before {
content:

counter (heading) “ - “;

}

First, declare a counter variable (using the counter-reset property and
the variable’s name: heading). This variable has a default value of 0. The number
of fimes counter-increment is called as a variable. It increments by a default
value of 1. For the first h2, counter-increment is triggered on the heading
variable, which increments it to 1. By using the counter function and passing the
variable, you can display that value using the : :before pseudo-element and the
content property.

For the second and third h2 elements, the heading variable triggers the counter-
increment, which increments it to 2 and 3, respectively.

If you add another h2 automatically, the variable becomes 4 and is displayed.
Thanks to the CSS counters feature, you don’t need to do anything.

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Fine-Grained Control

22. :is and :where

You can improve the way you target elements to style in CSS using the :is and :where
pseudo-class. They allow you to write readable and shorter CSS.

The :is and :where pseudo-classes allow you to select elements that match a

list of arguments you provide.

Instead of doing this: You can use the :is (or :where) class
like this:
hl:hover, :is(hl, h2, h3, h4, h5,
h2:hover, hé):hover {
h3:hover, text-decoration: underline;
h4:hover, color: green;
h5:hover, }

h6:hover {

text-decoration: /* or */

underline;

color: green; :where(hl, h2, h3, h4, h5,
} h6):hover {

text-decoration: underline;

color: green;

The difference between :is and :where is the CSS specificity. The specificity of
:is is the selector (in the arguments) with the highest specificity, so the specificity
of :where is 0. Furthermore, the specificity of a selector (or selectors) determines
its strength.

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Additionally, the types of selectors you use in a style determine their strength. When
you try to overwrite a style declaration, if the selectors in the new declaration are not
as strong as those in the declaration you want to overwrite, such overwriting would
not be successful. You can learn more about CSS specificity on MDN.

23. Isolation o

The isolation property specifies a new stacking context or not. A stacking context
controls how elements appear on a webpage over or under other elements.

Look at this example:

HTML CSS
<body> div {
<div class="card”> background-color: blue;
<button>Click Me!</ width: max-content;
button> padding: 30px;
</div> }
</body>

div button {

position: relative;

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity#:~:text=Specificity%20is%20an%20algorithm%20that,(or%20pseudo%2Delement).

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Here is the result:

The body element creates

the stacking context, so every

CIiCk Me| stack ordering for elements is

determined by the body.

Suppose you have an : :after pseudo-element on the bufton which provides a
background for it:

div button::after { Here is the result:
content: “";
position: absolute;
left: -10px;
right: -10px;
top: -10px;
bottom: -10px;
background-color:
red;

}

But now, to make the pseudo-element appear at the back of the button, use

z-index:

div button::after { Here is the result:

/* other code */
Click Me!

z-index: -1;

HubSppt 30

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

Because the current stacking context has the div, then the button on the V, using
-1 for the z-index pushes the red background behind the div. There are different
ways to make the red background appear between the div and the butfton. The

easiest way is using isolation:

div { The result:

background-color:
blue;

width: max-content;

padding: 30px; Click Me'
isolation: isolate; :

By using isolation: isolate on the div, the div creates its own stacking
context for its children, so every stack ordering will now be relative to it. So using
z-index: -1 on the red background would extend beyond the div.

24. Contain [

When the browser renders elements, it calculates their layouts, including how much
space they occupy and how one element’s layout affects another in the DOM. When
an element’s size changes, other elements will be affected — repainted — to fit the

new layout.

Repainting can lead fo performance problems, especially in large applications. This

is where the contain CSS property comes in. This property allows you to control

) «

an element’s “containment” to avoid outside side effects when the element’s layout
changes. It allows you fo paint an element (and its descendants) independently,
thereby improving performance as the browser does not need to recalculate layouts
for the contents of the whole page.

HubSPdt 31

https://developer.mozilla.org/en-US/docs/Web/CSS/contain

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

It accepts a couple of values. Here are the layout and paint values:

The layout value indicates to the browser
elementl {

) that the element’s contents do not affect
contain: layout;

other elements’ layouts, nor do other

elements affect the contained element’s

internal layout. This way, the contained

element2 {)
element renders independently.

contain: paint;
The paint value indicates to the browser
that it should not paint anything outside the
contained element’s border. So, any of
the element’s descendants styled to display

outside the border are clipped.

25. Use Shorthand Properties for More Concise
and Readable CSS

There are some properties in CSS that allow you to provide values for multiple
properties at once. This pattern allows you to write clearer, more readable, and more
concise code.

For styling element borders, you often use the following properties:

e border-width
e border-color

e border-style

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

HubSPdt

Instead of individually declaring these
properties, like this:

element {
border-width: 2px;
border-color: green;

border-style: solid;

You can use the border shorthand
property to declare the properties
simultaneously:

element {

border: 2px solid green;

Some shorthand properties, however, have a specific order, so providing the values

in a different order may not result in a style modification.

33

—— 25 Tips and Tricks for Using HTML and CSS Like a Pro

*

Conclusion

Implementing best practices
for HTML and CSS in your web
applications ensures that you can
build accessible, user-friendly, and
SEO-optimized applications. And
while the plethora of available
languages can help you create a
visually rich and functional web
page, you can benefit substantially
from learning to optimize your use
of the HTML and CSS, which are
foundational to superior web design.

